Synaptic connections, axonal and dendritic patterns of neurons immunoreactive for cholecystokinin in the visual cortex of the cat.

نویسندگان

  • T F Freund
  • Z Maglóczky
  • I Soltész
  • P Somogyi
چکیده

A subpopulation of gamma-aminobutyric acid (GABA) containing neurons was reported to contain cholecystokinin-immunoreactive material in the visual cortex of cat [Somogyi et al., J. Neurosci. (1984) 4, 2590-2603]. In the present study pre-embedding immunocytochemistry was used to identify which of the several types of presumed GABAergic nonpyramidal cells in areas 17 and 18 contain cholecystokinin immunoreactivity. Most of the cholecystokinin-immunoreactive somata were found in layers II-III, they were less frequent in layers I and VI, and relatively rare in layers IV and V. The distribution and density of the axon terminals resembled that of the cell bodies. Two well defined types of cholecystokinin-immunoreactive neuron were distinguished: (1) double bouquet cells in layers II-III with vertically projecting axons, and (2) small basket cells with local axons either restricted to layers II-III, or descending to layer V. Additional cholecystokinin-positive cells showed features of bitufted or multipolar neurons in layers II-VI and horizontal cells in layer I, but these cells could be defined less well due to partial staining. Cholecystokinin-immunoreactive dendrites were found to run horizontally in layer I for several hundred micrometers. Some of the cholecystokinin-immunoreactive cells in layer VI had very long dendrites ascending radially up to layer III, as did their axons. A few cholecystokinin-immunoreactive cells appeared to have two axons and this was confirmed by electron microscopy. All cholecystokinin-immunoreactive neurons and terminals were separated from the basal lamina of blood vessels by glial endfeet. Random samples of boutons from each layer as well as identified terminals traced to their origin from local neurons were examined in the electron microscope. All of the boutons established symmetrical (type II) synaptic contacts with dendritic shafts, spines or somata. Quantitative electron microscopy of the postsynaptic targets of double bouquet cells and small basket cells demonstrated clear differences between these two types of neuron; basket cells having a higher proportion of their terminals in synaptic contact with somata. The findings that several distinct types of cortical neurons, as defined by their synaptic connections, contain cholecystokinin-immunoreactive material and that identified axons of all examined neurons form type II synaptic contacts suggests that the majority, if not all cholecystokinin-positive boutons forming type II contacts originate from local cortical cells. The distribution of targets postsynaptic to cholecystokinin-positive neurons is compared to those of cells labelled by other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local potential connectivity in cat primary visual cortex.

Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synaps...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 1986